`); let searchUrl = `/search/`; history.forEach((elem) => { prevsearch.find('#prevsearch-options').append(`
${elem} `); }); } $('#search-pretype-options').empty(); $('#search-pretype-options').append(prevsearch); let prevbooks = $(false); [ {title:"Recently Opened Textbooks", books:previous_books}, {title:"Recommended Textbooks", books:recommended_books} ].forEach((book_segment) => { if (Array.isArray(book_segment.books) && book_segment.books.length>0 && nsegments<2) { nsegments+=1; prevbooks = $(`
${book_segment.title} `); let searchUrl = "/books/xxx/"; book_segment.books.forEach((elem) => { prevbooks.find('#prevbooks-options'+nsegments.toString()).append(`
${elem.title} ${ordinal(elem.edition)} ${elem.author} `); }); } $('#search-pretype-options').append(prevbooks); }); } function anon_pretype() { let prebooks = null; try { prebooks = JSON.parse(localStorage.getItem('PRETYPE_BOOKS_ANON')); }catch(e) {} if ('previous_books' in prebooks && 'recommended_books' in prebooks) { previous_books = prebooks.previous_books; recommended_books = prebooks.recommended_books; if (typeof PREVBOOKS !== 'undefined' && Array.isArray(PREVBOOKS)) { new_prevbooks = PREVBOOKS; previous_books.forEach(elem => { for (let i = 0; i < new_prevbooks.length; i++) { if (elem.id == new_prevbooks[i].id) { return; } } new_prevbooks.push(elem); }); new_prevbooks = new_prevbooks.slice(0,3); previous_books = new_prevbooks; } if (typeof RECBOOKS !== 'undefined' && Array.isArray(RECBOOKS)) { new_recbooks = RECBOOKS; for (let j = 0; j < new_recbooks.length; j++) { new_recbooks[j].viewed_at = new Date(); } let insert = true; for (let i=0; i < recommended_books.length; i++){ for (let j = 0; j < new_recbooks.length; j++) { if (recommended_books[i].id == new_recbooks[j].id) { insert = false; } } if (insert){ new_recbooks.push(recommended_books[i]); } } new_recbooks.sort((a,b)=>{ adate = new Date(2000, 0, 1); bdate = new Date(2000, 0, 1); if ('viewed_at' in a) {adate = new Date(a.viewed_at);} if ('viewed_at' in b) {bdate = new Date(b.viewed_at);} // 100000000: instead of just erasing the suggestions from previous week, // we just move them to the back of the queue acurweek = ((new Date()).getDate()-adate.getDate()>7)?0:100000000; bcurweek = ((new Date()).getDate()-bdate.getDate()>7)?0:100000000; aviews = 0; bviews = 0; if ('views' in a) {aviews = acurweek+a.views;} if ('views' in b) {bviews = bcurweek+b.views;} return bviews - aviews; }); new_recbooks = new_recbooks.slice(0,3); recommended_books = new_recbooks; } localStorage.setItem('PRETYPE_BOOKS_ANON', JSON.stringify({ previous_books: previous_books, recommended_books: recommended_books })); build_popup(); } } var whiletyping_search_object = null; var whiletyping_search = { books: [], curriculum: [], topics: [] } var single_whiletyping_ajax_promise = null; var whiletyping_database_initial_burst = 0; //number of consecutive calls, after 3 we start the 1 per 5 min calls function get_whiletyping_database() { //gets the database from the server. // 1. by validating against a local database value we confirm that the framework is working and // reduce the ammount of continuous calls produced by errors to 1 per 5 minutes. return localforage.getItem('whiletyping_last_attempt').then(function(value) { if ( value==null || (new Date()) - (new Date(value)) > 1000*60*5 || (whiletyping_database_initial_burst < 3) ) { localforage.setItem('whiletyping_last_attempt', (new Date()).getTime()); // 2. Make an ajax call to the server and get the search database. let databaseUrl = `/search/whiletype_database/`; let resp = single_whiletyping_ajax_promise; if (resp === null) { whiletyping_database_initial_burst = whiletyping_database_initial_burst + 1; single_whiletyping_ajax_promise = resp = new Promise((resolve, reject) => { $.ajax({ url: databaseUrl, type: 'POST', data:{csrfmiddlewaretoken: "0NDc9mbeCV8FDHYcx8gar5Crmeq8os7FlZLxaXseTw5y9wqveqphF70OYA166qxk"}, success: function (data) { // 3. verify that the elements of the database exist and are arrays if ( ('books' in data) && ('curriculum' in data) && ('topics' in data) && Array.isArray(data.books) && Array.isArray(data.curriculum) && Array.isArray(data.topics)) { localforage.setItem('whiletyping_last_success', (new Date()).getTime()); localforage.setItem('whiletyping_database', data); resolve(data); } }, error: function (error) { console.log(error); resolve(null); }, complete: function (data) { single_whiletyping_ajax_promise = null; } }) }); } return resp; } return Promise.resolve(null); }).catch(function(err) { console.log(err); return Promise.resolve(null); }); } function get_whiletyping_search_object() { // gets the fuse objects that will be in charge of the search if (whiletyping_search_object){ return Promise.resolve(whiletyping_search_object); } database_promise = localforage.getItem('whiletyping_database').then(function(database) { return localforage.getItem('whiletyping_last_success').then(function(last_success) { if (database==null || (new Date()) - (new Date(last_success)) > 1000*60*60*24*30 || (new Date('2023-04-25T00:00:00')) - (new Date(last_success)) > 0) { // New database update return get_whiletyping_database().then(function(new_database) { if (new_database) { database = new_database; } return database; }); } else { return Promise.resolve(database); } }); }); return database_promise.then(function(database) { if (database) { const options = { isCaseSensitive: false, includeScore: true, shouldSort: true, // includeMatches: false, // findAllMatches: false, // minMatchCharLength: 1, // location: 0, threshold: 0.2, // distance: 100, // useExtendedSearch: false, ignoreLocation: true, // ignoreFieldNorm: false, // fieldNormWeight: 1, keys: [ "title" ] }; let curriculum_index={}; let topics_index={}; database.curriculum.forEach(c => curriculum_index[c.id]=c); database.topics.forEach(t => topics_index[t.id]=t); for (j=0; j
Solutions
Textbooks
`); } function build_solutions() { if (Array.isArray(solution_search_result)) { const viewAllHTML = userSubscribed ? `View All` : ''; var solutions_section = $(` Solutions ${viewAllHTML} `); let questionUrl = "/questions/xxx/"; let askUrl = "/ask/question/xxx/"; solution_search_result.forEach((elem) => { let url = ('course' in elem)?askUrl:questionUrl; let solution_type = ('course' in elem)?'ask':'question'; let subtitle = ('course' in elem)?(elem.course??""):(elem.book ?? "")+" "+(elem.chapter?"Chapter "+elem.chapter:""); solutions_section.find('#whiletyping-solutions').append(` ${elem.text} ${subtitle} `); }); $('#search-solution-options').empty(); if (Array.isArray(solution_search_result) && solution_search_result.length>0){ $('#search-solution-options').append(solutions_section); } MathJax.typesetPromise([document.getElementById('search-solution-options')]); } } function build_textbooks() { $('#search-pretype-options').empty(); $('#search-pretype-options').append($('#search-solution-options').html()); if (Array.isArray(textbook_search_result)) { var books_section = $(` Textbooks View All `); let searchUrl = "/books/xxx/"; textbook_search_result.forEach((elem) => { books_section.find('#whiletyping-books').append(` ${elem.title} ${ordinal(elem.edition)} ${elem.author} `); }); } if (Array.isArray(textbook_search_result) && textbook_search_result.length>0){ $('#search-pretype-options').append(books_section); } } function build_popup(first_time = false) { if ($('#search-text').val()=='') { build_pretype(); } else { solution_and_textbook_search(); } } var search_text_out = true; var search_popup_out = true; const is_login = false; const user_hash = null; function pretype_setup() { $('#search-text').focusin(function() { $('#search-popup').addClass('show'); resize_popup(); search_text_out = false; }); $( window ).resize(function() { resize_popup(); }); $('#search-text').focusout(() => { search_text_out = true; if (search_text_out && search_popup_out) { $('#search-popup').removeClass('show'); } }); $('#search-popup').mouseenter(() => { search_popup_out = false; }); $('#search-popup').mouseleave(() => { search_popup_out = true; if (search_text_out && search_popup_out) { $('#search-popup').removeClass('show'); } }); $('#search-text').on("keyup", delay(() => { build_popup(); }, 200)); build_popup(true); let prevbookUrl = `/search/pretype_books/`; let prebooks = null; try { prebooks = JSON.parse(localStorage.getItem('PRETYPE_BOOKS_'+(is_login?user_hash:'ANON'))); }catch(e) {} if (prebooks && 'previous_books' in prebooks && 'recommended_books' in prebooks) { if (is_login) { previous_books = prebooks.previous_books; recommended_books = prebooks.recommended_books; if (prebooks.time && new Date().getTime()-prebooks.time<1000*60*60*6) { build_popup(); return; } } else { anon_pretype(); return; } } $.ajax({ url: prevbookUrl, method: 'POST', data:{csrfmiddlewaretoken: "0NDc9mbeCV8FDHYcx8gar5Crmeq8os7FlZLxaXseTw5y9wqveqphF70OYA166qxk"}, success: function(response){ previous_books = response.previous_books; recommended_books = response.recommended_books; if (is_login) { localStorage.setItem('PRETYPE_BOOKS_'+user_hash, JSON.stringify({ previous_books: previous_books, recommended_books: recommended_books, time: new Date().getTime() })); } build_popup(); }, error: function(response){ console.log(response); } }); } $( document ).ready(pretype_setup); $( document ).ready(function(){ $('#search-popup').on('click', '.search-view-item', function(e) { e.preventDefault(); let autoCompleteSearchViewUrl = `/search/autocomplete_search_view/`; let objectUrl = $(this).attr('href'); let selectedId = $(this).data('objid'); let searchResults = []; $("#whiletyping-solutions").find("a").each(function() { let is_selected = selectedId === $(this).data('objid'); searchResults.push({ objectId: $(this).data('objid'), contentType: $(this).data('contenttype'), category: $(this).data('category'), selected: is_selected }); }); $("#whiletyping-books").find("a").each(function() { let is_selected = selectedId === $(this).data('objid'); searchResults.push({ objectId: $(this).data('objid'), contentType: $(this).data('contenttype'), category: $(this).data('category'), selected: is_selected }); }); $.ajax({ url: autoCompleteSearchViewUrl, method: 'POST', data:{ csrfmiddlewaretoken: "0NDc9mbeCV8FDHYcx8gar5Crmeq8os7FlZLxaXseTw5y9wqveqphF70OYA166qxk", query: $('#search-text').val(), searchObjects: JSON.stringify(searchResults) }, dataType: 'json', complete: function(data){ window.location.href = objectUrl; } }); }); });
FAQs
The interval of convergence can be calculated once you know the radius of convergence. First you solve the inequality |x − a| < R for x and then you check each endpoint individually. So how do we calculate the radius of convergence? We use the ratio test (or root test) and solve.
What is the open interval of convergence? ›
The center of the interval of convergence is always the anchor point of the power series, a. The radius of convergence is half of the length of the interval of convergence. If the radius of convergence is R then the interval of convergence will include the open interval: (a − R, a + R).
What are the intervals of convergence in interval notation? ›
In notation, the possible intervals of convergence for a series centered at the origin are [−R,R],[−R,R),(−R,R],(−R,R),{0}=[0,0], and (−∞,∞).
How to find the radius of convergence of a power series? ›
Step 1: Apply the Ratio Test to your power series (including the terms). Step 2: Set the limit obtained in Step 1 less than the number 1, and simplify it by isolating . Step 3: After obtaining an expression | x − a | < r in step 2, call the radius of convergence.
What is the convergence of the power series? ›
Convergence of a Power Series. Since the terms in a power series involve a variable x, the series may converge for certain values of x and diverge for other values of x. For a power series centered at x=a, the value of the series at x=a is given by c0. Therefore, a power series always converges at its center.
How do you find the interval in which the series is convergent? ›
Steps for Finding the Interval of Convergence of a Power Series Using the Ratio Test. Step 1: Find the expressions for the th and th terms of the series. Step 2: Find the ratio of the th term to th term and simplify the expression. Step 3: Find the limit of the absolute value of the ratio as approaches infinity.
How to find the open interval? ›
The easiest way to identify an open interval is by looking at the bracket used. Round brackets represent an open interval. On the other hand, a closed interval is denoted by the square brackets like [a, b].
What is the P rule for convergence? ›
An infinite series converges if the limit of its sum approaches a specific finite value. p-series converge when the power appearing in the denominator of each term satisfies p>1.
Why is infinity open interval? ›
We can look at infinity and negative infinity as endpoints in two ways. On one hand, infinity is a concept, not an actual number, so we can't ever actually reach it. Viewing it this way, we would say the endpoints infinity and negative infinity are not included in the interval, so it's an open interval.
What is the interval of convergence if R infinity? ›
The Ratio Test shows us that regardless of the choice of x, the series converges. Therefore the radius of convergence is R=∞, and the interval of convergence is (−∞,∞).
Number Line Representation of Different Types Of Intervals
Interval Notation | Inequality | Type of Interval |
---|
(a, b) | {x | a < x < b} | Open Interval |
[a, b] | {x | a ≤ x ≤ b} | Closed interval |
[a, ∞) | {x | x ≥ a} | Half-Open Interval |
(a, ∞) | {x | x > a} | Half-Open Interval |
2 more rows
How do you find intervals in interval notation? ›
Intervals are written with rectangular brackets or parentheses, and two numbers delimited with a comma. The two numbers are called the endpoints of the interval. The number on the left denotes the least element or lower bound. The number on the right denotes the greatest element or upper bound.
How to find the interval of convergence for a power series? ›
Therefore, to completely identify the interval of convergence all that we have to do is determine if the power series will converge for x=a−R x = a − R or x=a+R x = a + R . If the power series converges for one or both of these values then we'll need to include those in the interval of convergence.
What is the radius and interval of convergence? ›
The radius of convergence is usually required to find the interval of convergence. While the radius gives us the number of values where the series converges, the interval gives us the exact values of where the series converges and doesn't.
What is the sum of power series? ›
Power series is a sum of terms of the general form aₙ(x-a)ⁿ. Whether the series converges or diverges, and the value it converges to, depend on the chosen x-value, which makes power series a function.
Does the derivative of a power series have the same interval of convergence? ›
Integrating or differentiating a power series term-by-term can only work within the interval of convergence. The interval of convergence of the integral/derivative will be the same, except maybe for the endpoints.
What is the formula for convergence of a series? ›
The geometric series convergence formula is a 1 − r if |r| < 1, where a is the first term and r is the common ratio, i.e., the number that each term is multiplied by in order to produce the next term. Some people refer to it as a formula, but it is both a formula and a test.
What is the interval of convergence of exponential functions? ›
R is called the radius of convergence of the power series, (a - R, a + R) is called the interval of convergence and is usually taken as the domain of the function given by the power series. For the two endpoints a - R and a + R, we need to consider the limit behavior of the given series case by case.
How to determine interval of convergence for Maclaurin series? ›
Convergence may be determined by a variety of methods, but the ratio test tends to provide an immediate value r r r for the radius of convergence. The interval of convergence may then be determined by testing the value of the series at the endpoints − r -r −r and r r r.